Muon Reconstruction Review

Muon Reconstruction Review

Jim Kowalkowski
Marc Paterno

1 Introduction

Thisreview considered the various packages related to muon reconstruction, excluding those that are pro-
vided the trf++ tracking package. The CV S packages were

e muo_data

e muo_dataprocessor
¢ muo_hitreco

* MuO_segmentreco
e muo_trackreco

We considered both design issues and implementation issues, and address these in separate parts of this
document. Our talk from the July D@ workshop in Sesattle was used as a guideline for our discussion of use
of the EDM and of the framework.

This document looks into the relationship of algorithm objects to data objects. Due to time considerations,
only the higher level data objects that appear in the event were considered. The intermediate segment
finding data objects such as Local WireHit were only looked at briefly. Other areas this document covers
are C++ implementation issues such as memory management and code efficiency.

There are several areas we do not address in this document: the muon geometry classes, and the packages
muo_utils, muon_index and spacegeom.. We have omitted any analysis of these items for lack of time;
there are, however, passing comments concerning obvious defi ciencies in these packages.

2 Overview

We were very happy to receive clear class diagramsand a clear high-level overview of the system. This
made the task of reviewing the software considerably easier than it would otherwise have been, and proba-
bly saved two or three days’ effort.

It isour current understanding that the algorithm code itself must be abletorun in level 3 and in the offline
environments. This meansthat the algorithm cannot have direct visibility to the EDM classes (Chunk,
Event), or the framework classes (Package), or thelevel 3*tool” classes. The organizational concepts pre-
sent in the muon packages appear to be correct a the highest level. That isto say, the breakdown of
offline reconstructor package orchestrating the reconstruction by plucking items from the event, creating
and using algorithm objects it appropriate. Thelevel 3 tools can do the same orchestration without the use
of the event or chunksif oneiscareful. Our intention was to produce afigure that illustrates our current
understanding of the system at ahigh level and the pieces that thisreport focuses on. Due to time con-
straintsthisisnot possible. The talk from Onne Peters can be used for this purpose.

The “MuoDataProcessor” concept discussed at the review meeting seems to only appear in the hit finding
parts of the system. This concept isnot employed in the segment and track finding parts. We were under
the impression after the review meeting that this was a fundamental principlethat all the code was based
on. We aso found that the current hit finding code does not do anything with the scintillator hits.

2.1 Definitions

Adaptor Class: A classthat extends the functionality of another smpler class, not by inheritance, but by
containment. The containment isnot by value but by pointer or reference. An adaptor classin this context
takes the object that it is extending as an argument to the constructor. The methods of the adaptor class call
down to the contained class and typically provide higher level services.

3 Major Concerns

We have several sgnificant concernsregarding this software. These concerns have been divided into sev-
era different groups:

1. Coding concerns:. thisincludes matters of program correctness, safety and efficiency in the use of C++.

2. Design concerns: this concerns the larger-scal e issues of design, especially of the appropriate use of
object-oriented and generic programming techniques, and appropriate use of D@ infrastructure code.

3. Management concerns: thisincludes matters of the software devel opment and management process,
and adherence to the D@ software devel opment guidelines.

3.1 Coding

3.1.1 Memory Management

Memory management is a disaster. When objects are created with new, it is critical that the ownership of
the object is clear at all times so that the memory can be cleaned up. Knowing the owner ensuresthat all
objects are destroyed and destroyed only once. Knowing thisalso will make surethat items are shared us-
ing pointers and references only when sharing is actualy intended. There appearsto be a fairly consistent
memory management policy throughout the code. We understand this policy to be:

Containers and aobjects are ways created with new. Objects created
by functions are returned by pointer and it isthe callers' responsibility
to clean up the memory. Containers mostly hold pointersto objects.
Copying containers only copies the pointers.

We bdlieve that thisis not the proper memory management scheme for the problem. We further believe
that this schemeis thereason for the exisence of the DOOM flavored objects that livein the event. This
scheme produced many inconsistencies and ambiguitiesin congruction of the containers (copy vs. make
empty one). In most cases, the policy is followed for the creation of objects, and the memory is never re-
covered by the calling functions. The number of places this occursistoo numerous to include in this
document. Thisis probably the most important item that needs to be resolved and fixed. Thiswill cause
the reconstruction executable to crash. Thispoalicy is likely to cause the code to perform very poorly,
partly because of the heavy copying and heavy use of the memory allocator.

Using this policy causes other subtle problem to appear, such as this piece of codein the track finding algo-
rithm:

MioSegnent Mat chLi st xsli st;

/1 Sort list by matching quality
xslist.sort();

The problem hereisthat thisisalist of pointers. Sorting it does not sort by matching quality, it sorts by
ascending pointer value, which istypically usdless and in error. The second problem hereisthat sorting a
listisvery inefficient.

Muon Reconstruction Review

3.1.2 Error Reporting

There are basically two types of errors: global errorsthat affect the behavior of the program overall, and
local errorsthat only affect a single reconstructor or algorithm. A potentia global error, for example, could
be that a data integrity check-sum has been used to detect an error in the current event data. The code that
detected the error will need to decide if the event should be considered by packages downstream of itself,
or if it should be throw away. Thistype of error impacts all thereconstuctorsthat are active. A local error,
for example, can be generated by a portion of the algorithm code that report if too many objects of a par-
ticular type have been produced from this event. Thiserror may not be significant to any other
reconstructors and not affect the program behavior at al. Both of these are not handled in the muon code.

Thefirgt type of error isaproblem for al reconstruction packages, because a policy has not been estab-
lished by the infrastructure group. Currently attempts are made to return error codes and print simple
messages to the console. Both of these are bad. Printing messages to cout just causes confusion, especially
if the message does not contain context. In most cases the return codes are not properly propagated up the
call change where decision about continuing can be made.

3.1.3 Miscellaneous

When areference to a chunk isretrieved from the event into a Thandle<>, it should never be removed from
the Thandle<>. Under no circumstances should it be removed. Many of the reconstructors pull the chunk
pointers from the Thandle<>. Some of the extractions actually cause the const nature of the object to be
lost. The Thandleisthereto protect you and the information in the event, extracting its contents defeats
this purpose.

In several places we found constants that were hard-coded into the algorithm implementation files. Many
of these constants should be retrieved via RCP or from a geometry/hardware configuration database. One
should avoid coding any constantsinto the application that may need to be changed in the future or that
may vary with time. These constants are typically impossible to track down when changes need to be
made.

3.2 Design

3.2.1 Template Strategy and Algorithm Objects

The use of a classtemplate for MuoDataProcessor<> provides no gain at the great expense of complexity.
All of the MuoDataProcessors, as used in the algorithms, arereally just functions. The normal overloaded
function mechanism of C++ would suffice. The functions that comprise an algorithm really need to be
composed into an algorithm object; one that can be configurable through RCP or another means.

Templates are good for expressing commonality of structure between many classes (algorithmsin this
case). The only commonality expressed by the MuoDataProcessor template isthat the single static method
has the same “processData” and that it takes two arguments and returns one thing. Thisis much too trivial
arequirement to consider templates as a viable solution.

The MuoSegmentReco package appears to use a more appropriate strategy. Here there isan abstract base
class for the algorithm and a concrete implementation. The reconstructor creates the algorithm, which can
perhaps be chosen by looking at an RCP value, then invokesit to carry out thework. We are hoping this
model can be expanded upon in favor of the MuoDataProcessor model.

It isunclear exactly what the MuoTrackReco package will be doing in thisrespect. We found differences
in strategies between t00.67.00 and t00.68.00 that could not be explained. The strategy from the * 68 ver-
sion appeared to be moving towards the MuoSegmentReco moddl. The strategy of the’ 67 version appears
to be a Fortran-like model. We did not spend very much time looking into this area.

3.2.2 Problem Decomposition

In looking through the algorithms, we had a difficult timetelling what exactly the algorithm was and what
it was actually doing. One of our concernsisthat we could not tell what manipulations are completely de-
fined by the detector design (fixed angle calculation, fixed relationships of components) and which were
actually algorithmic, or higher level items. The specific example we use in this document isthe PDT hit
finding function. Here theloop through timing values in the channel looks at al pairs of wiresin the chan-
nel. We could not discern, for example, what combinations of wires were physically possible and which
werenot, or if the angle and point cal culations were properties of the channd or strictly determined by the
algorithm (if the calculation could various between algorithms that make wire hits from PDTChannels).
What we would have like to have seen would be a clear separation of things that go into making decisions
about what isawire hit from things that do simple calculations. The calculation here being defined as one
that hasto do entirely with the design of the detector and would not change if the wire hit finding algorithm
changed. We do not mean to pick on this particular piece of code; it was a small enough piece for usto go
over and discover thisproblem. Most of the code suffers from the same problem.

The source of this problem isthat the algorithm has not been decomposed properly into manageabl e units.
Many of the tasks are performed directly by the algorithm code, as opposed to utilities and tools. Thetasks
perform operations on dumb data structures rather then rea objects with behavior.

3.2.3 Hit Storage

The hit storage container MuoHitCollection appears to be not very useful asit stands. Having the two
multimaps appear together all the time does not seem to be a good idea, judging from how the algorithms
arewritten. We are under theimpression that in some sections of the detector, the hitsreferred to in tracks
can be either wire hits or scintillator hits. The current MuoHitCollection does not facilitate this effort and
does not provide adequate services to perform thisfunction. The current design will most likely lead to
more of the problems described in the previous section. Another problem that will likely occur will be
when segments currently refer to the hitsthey contain by Muolndex only. The only way to determineif it
isa ScintHit or a WireHit would be to check the bitsin the Muolndex, and then go to the correct multimap
in the MuoHitCoallection. Thisisnot aclean way for users of the segments and tracks to navigate to the hit
objects.

3.2.4 DOOM Object Versions

Throughout the code, we could not see aneed to have persistent derivations of basic data objects. Doing
this creates more classes then are needed and forces copies of many objects to occur. We believe that this
strategy exists because of the memory management policies and because algorithmsreturn newly created
objects.

3.2.5 EDM and Framework Usage

The muon reconstruction code makes poor use of the Event Model. There are no interesting functionsin the
event data classes (chunks) and no selectors to find them. The talk that we gave at the Seattle DO workshop
discusses good chunk design and should be used as a starting point. The reconstructors (framework pack-
ages) that produce chunks do not fill in important details into the chunk such as parentage. The
reconstructors that find chunks in the event do not use keysin any interesting way and do not use selectors.
Locating objects in the event as the reconstructors do will essentially return any chunk of that type. If more
than one chunk exists of that type in the event, then there is no guarantee you will get the correct chunk.

Segmentsrefer to hits using avector of Muolndex. It will be difficult to tell if the hitisascint or wire hit.
More toolswill be needed for extracting scint or wirehitsif thisisthe strategy that will remain.

3.2.6 Use of Common DO Tools and Utilities

In several places the standard DO tools are not being used or the standard tools are being replaced by cus-
tom ones. Section 4.1 on recommendations contains a detailed discussion about this.

Muon Reconstruction Review

3.3 Testing

The component tests throughout the muon code are mostly dummies. Thisisreally not acceptable. Sec-
tion 8 hasamore detailed explanation of testing.

4 Design Recommendations
Several of the design issues that we found in this set of packages are present in other DO packages.

4.1 Common DO libraries and Tools

Thereisalarge amount of low-level utility code available to developers at DO. In many cases we find that
developers re-implement these utilities or work around missing features by producing large amounts of
code directly in the algorithm. In other cases devel opers simply do not know that utilities and tools exist.
We see this problem in the muon code. It isnot possible to cover every case, but we can discuss afew that
we have found. We use these three exampl es because each illugrates a different type of problem:

(1) perhapsdidikefor aparticular set of classes, so re-implementation occurs,
(2) missing features, so ugly code appears surrounding its use, and

(3) inadequaciesin aclass cause duplication of effort.

4.1.1 SpacePoint/ CartesionPoint

In many sections of the code, pointsin space are represented by an array of three doubles. A standard
package called spacegeom exists that has several classes designed to represent pointsin space. Working
with a standard object is the correct thing to do, so all users can share an understanding of how the object
works and fed comfortable |ooking through code that isnot part of their subsystem. The muon_geometry
actually uses the SpacePoint and CartesionPoint objects, but then chooses to pick the information out and
present it in a different representation.

If the classes in the spacegeom package are not adequate because of memory usage, performance, or inter-
face, then the owners of that package should be approached so that changes can be made to the classes.

The use of anon-object such as an array of doublesis particularly bad; you cannot even do smple opera-
tions such as copy the point unless you hand-code aloop. Copying the point (array of doubles) in this case
is ahuge distraction from what the algorithm is actually doing and a potentia spot for a bug.

4.1.2 UnpDataChunk

The extraction of channels from modules in the UnpDataChunk in the muon code is quite hideous and un-
pleasant (like kissing alpacalips). Itishideousin terms of understandability, resilience to change,
processing time, and memory usage. The bit manipulations make it difficult to change the underlying
classes — because you have intimate knowledge of internal detailsin the high-level application code. The
PDTChannels and MDTChannels, for example, are hefty and require quite a bit of work and memory to

copy.
Talking to the Author of UnpDataChunk about the PDTChannd and MDTChannel use case could grestly
simplify your life and thiscode. Adding two small utilities that allow for extraction of channels and mod-

ules of a particular type from the UnpDataChunk - by pointer, not by value — could reduce the code in the
algorithm down to two or threelines that are clear and easy to understand.

4.1.3 Muolndex

After thereview result meeting on 12/16/1999, we had theimpression that Muolndex was not going to be
used in the level 3 algorithm because of its size. This meansthat the algorithm will be completely different
codein level 3 that does the exact same thing because the offline requires the use of Muolndex. Thisisa
shame.

If sizeisthe mgjor concern here, then a simple conversion with Mike Fortner could show that this object
can be reduced in size by perhaps nine times if need be. If the Muolndex is not adequate for level 3, then
the owner of Muolndex should be approached to seeif it can be made acceptable for level 3.

4.2 Classes with Useful Features

There are many classes in the muon packages that are essentially featurel ess data structures. In many cases,
these classes can be made to do work that the algorithms and user of them need. A simple exampleisthe
ListOfPoints classin the segment finding algorithm. Herethe ListOfPointsisjust an STL vec-

tor<Local Point*>. When looking through code that usesthis class, it quickly becomes clear that the user
code must implement functionality that should really be part of the classitself. An example isthe mark-
Hits() method of the MuoSegementAlgCombi class. Here marking all the hits used in the ListOfPoints
should be amethod of the ListOfPoints class. Inheritance can be used to extend the functionality of the
vector and list classes to add things like markHits(). Moving markHits() to the ListOfPoints class putsthis
function whereit belongs and all ows this action to occur correctly with asingle method call. Many of the
collection classes (typedefs) suffer from this problem.

4.3 Example MuoHitProcessor Changes

We were going to present a couple of snapshots of the MuoHitProcessor code, each showing specific
changes that can be made. Unfortunately that would take more time than we have. Instead, the fina ver-
sion parts are shown below, along with explanations of what they do. Theintention isnot to show exactly
how this code should be modified; rather, it isto show what sort of modifications are needed to many parts
of the code, to enhance the maintainability of the code and to easily track down problems. This describes
how to do away with the hit processing class templates, and to replace them with meaningful configurable
algorithm objects. Much of the MuoHitProcessor isused here and as the examplein this document. A few
examples are given from the segment finding algorithm to illustrate to sort of things that should be done
there. The hope hereis that these MuoHitProcessor changes can be used asamodd for the segment and
track finding algorithms. This piece of algorithm code was chosen because it does should not involve
chunks or any EDM related classes. The EDM related pieces of the system are | eft to another section of
this document.

4.3.1 Example MuoHitCollection Changes

In the current design the MuoHitCollection isreally just a pair of multimaps put together with a couple
utility methods to aid in the insertion of hits. Other then this, the maps arereally used separately by the
code. Judging from the fact that hits arereferred to in segments by Muolndex only, we made the assump-
tion that the most interesting high-level use of hits will be “give be all the wire hits associated with this
Muolndex” or “give be all the scint hits associated with this Muolndex” or “give me al the MuoHits asso-
ciated with this Muolndex. If thisistrue, then giving the user alist or vector of hits seems appropriate and
natural instead of a beginning and ending iterator of amulitmap. Our example here assumesthat thisis
how one wants to operate with hits. Similar techniques can be used even if our thinking does not exactly
match redlity.

The firg thing we will do is separate the two types of hitsinto separate objects and provide functionsto aid
in theinsertion hits. Notice that the base object here that hits are stored in isamap of Muolndex -> vector
of hits.

tenplate <class HI T, class CONT = std::vector<H T> >
class HitContainer : public std::mp<Miol ndex, CONT> {
public:

typedef HIT hit_type

Hit Container() { }

bool insertHi t(const HIT& hit) {
pair<iterator,bool> | (find(hit.index()),true);
if(l.first==end())

Muon Reconstruction Review

I =insert(val ue_type(hit.index(),data_type()));
if(l.second==true)
I.first.push_back(hit);
return |.second,
}
b

typedef HitContai ner<MioWreH t> WreH tMp;
typedef Hit Contai ner<MiuoSci nt Hit> ScintHitMp;

/1 this could be a method of the HitContainer class
tenpl ate <class CONT, class RET>
voi d extract AsHits(const CONT& cont, RET& fillne) {
for (CONT: :const _iterator it=cont.begin();it!=cont.end();++it)
fillme.push_back(&(*it).second);
}

voi d use_exanpl e_func(const WreHitMp& wh, const ScintH tMp& sh) {
vect or <MiuoHi t s*> shar ed_comon;
extract AsHi t s(wh, shared_conmon) ;
extract AsHi t s(sh, shared_conmmon);
sort (shared_common. begi n(), shared_common. end());
use all the hits in there base format

}

Itislikely that organization such asthis and this use of templatesis overkill for a small part such as col-
lecting hits.

4.3.2 Example Channel Adapter Utility Classes

Aswe looked through the PDT and MDT hit finding code, we immediately noticed that extended channel
classes could help out quite abit. Two new classes are introduced here to assist in channel related opera-
tions. Both are derived from a common base class.

cl ass Hit Channel

L
public:
Hi t Channel (const Channel & c) {...set private info...}
const Mol ndex& index() const { return _index; }
const MioSectionl ndex& sectionlndex() const { return _section; }
const CartesionPoint& position() const { return _pos; }
const CartesionPoint& orientation() const { return _ori; }
pr ot ect ed:
Hi t Channel (const Channel & ¢, const Miolndex& n) {...set private info...}
const Channel * _chan;
Miol ndex _i ndex;
MioSect i onl ndex _secti on;
Cart esi onPoi nt _pos;
Cartesi onPoint _ori;
static Miol ndexTrans _index_trans;
b

class TinePairs

{
public:
TinmePairs():_t1(0.),_t2(0.)._has_info(false) { }
Ti mePai rs(double t1, double t2, double wire_len,double angle):
_ta(tl), _t2(t2)
{ _has_i nfo=T1T2ToTDTAPDT(_t1, _t2, wire_len,_td, _ta) &&
TDTAToDr Di st AxDi st PDT(_td, fabs(_ta), angle, _xd, _xa); }

/1 just guested at the appropriate names here
double driftTime() const { return _td; }
doubl e axial Time() const { return _ta; }

doubl e driftDistance() const { return _xd; }
doubl e axi al Di stance() const { return _xa; }

bool haslnfo() const { return _has_info; }
private:

double _t1, t2;

double _xd, _xa, _td, _ta;

bool _has_info;

}s

cl ass Hi t PDTChannel : public HitChannel
{
public:
Hi t PDTChannel (const PDTChannel & c): Hi t Channel (c) {...}

const MiuoGeonPDT* get PDT() const;
doubl e wireLength() const;

doubl e axDi st ToTi ne() const;
doubl e angl e() const;

Hi t PDTChannel next();

/1 this is only a sanple - can be done nmuch better (should not be inline)
voi d validTi mePairs(vector<TinmePairs>& fillme) const {
fillme.clear();
doubl e angle = chan. angle();
doubl e I en = chan.w reLength();
for(int i1=0;il<chan. nunEvenTi mes(); ++i 1) {
for(int i2=0;i2<chan. nunOffTi mes(); ++i 2)
TimePair t(chan.timeEven(il),chan.tinmeddd(i?2),!|en,angle);
if(t.haslnfo()==true) fillnme.push_back(t);

}

private:
const MiuoGeonPDT* _pdt;
b

cl ass Hi t MDTChannel : public HitChannel

public:
Hi t MDTChannel (const MDTChannel & c):
_hit_wire(..calc...),H tChannel (c){...}

static double binSize() { return 18.8; } // is this really fixed?

const MuoGeonMDT* get MDT() const;

const Mol ndex& wirel ndex() const;

const CartesionPoint& wirePosition() const;
const CartesionPoint& wireOrientation() const;
doubl e wireLength() const;

doubl e driftDistance() const;

doubl e tof () const;

doubl e wi reLengt hO() const;

double wireD () const;

doubl e di stanceToOrigi n() const;

doubl e driftTime() const;

private:
Miol ndex _wi re_i ndex;
int _hit_wre;
const MuoGeonMVDT* _ndt;
Cartesi onPoi nt _wposition;
Cartesi onPoint _worientation;

Muon Reconstruction Review

4.3.3 Example HitBuilder Algorithm Object

As mentioned in the concerns and problems section, an algorithm object is needed to replace the “MuoDa-
taProcessor” template and functions. The functionsthat find the UnpDataChunk and use the Event are
removed; the code that does this should live directly in the reconstructor. Here isan example of how the
PDT and MDT hit finding code can be represented by an agorithm object. It isimportant to note that we
assumed that classes such as CartesionPoint support multiplication by a scalar or another point, and also
support addition and subtraction — after al, thisis one of the benefits of using C++.

class HitBuilder {

public:
typedef const vector<const PDTChannel *> PDTChannel s;
typedef const vector<const MDTChannel *> MDTChannel s;

Hi t Bui | der (RCP r);

virtual ~HitBuilder() { }

virtual void buildWreHits(PDTChannel s& chans, WreH tMap& hits) = O;
virtual void buil dWreHits(MDTChannel s& chans, WreHitMap& hits) = O;

voi d buil dWreHits(PDTChannel s& c1, MDTChannel s& c2, WreHitMap& hits)
{ buildWreH ts(cl,hits); buildWreH ts(c2,hits); }

/1 virtual void buildScintHits(...) =0; // future use

private:
static double speedOLight() { return 29.98; } // cnins
/1 just assume that all these come from RCP
double v_drift;
doubl e v_axi al ;
double drift_error;
double max_tinme_dif;
doubl e x_d_nax;
doubl e del ay;
b

class SinpleH tBuilder : public HtBuilder { ... };

/1 The inplementation of the wire hit building using PDTChannels coul d be as foll ows:
Si npl eHi t Bui | der: : bui | dW r eHi t s(PDTChannel & chans, WreH t Map& hits) {
vect or <Ti nePai r> pairs;
PDTChannel : : const _iterator iter = chans. begin();
for(;iter!=chans.end();++iter) {
Hi t PDTChannel chan(*iter);

i f(chan. getPDT()==0)

/1 1og an error using the error | ogger
/] assune that channel data is bad and that we cannot continue
/1 throw specific exception

}

chan. val i dTi mePairs(pairs);

double wire_len_cent;

double drift_error = 0.1*xd;
vector<TinePair>::iterator titer = pairs.begin();

for(;titer!=pairs.end(); ++titer)

{

drift_error=0.1 * (*titer).axial D stance();
if((*titer).axial Tinme() <=0)

Hi t PDTChannel nchan(chan. next());
wire_len_cent = .5 * nchan.wireLength() - (*titer).axial D stance();

hits.insertHit(MioWreH t(
Posi ti on(
nchan. position() - (wire_len_cent * nchan.orientation()),

_axial _time_error * nchan.orientation(),
),
nchan. i ndex(),
(*titer).driftTine(),
(*titer).driftDi stance(),

driftError
))s
}
el se
t . . N
wire_len_cent = .5 * chan.wireLength() - (*titer).axial D stance();
hits.insertHit(MioWreH t(
Posi ti on(
chan. position() - (wire_len_cent * chan.orientation()),
_axial _time_error * chan.orientation(),
),
chan. i ndex(),
(*titer).driftTine(),
(*titer).driftDi stance(),
driftError
))s
}

}

/1 The inplenmenation of the wire hit building using MDTChannels could be as follows:
Si npl eHi t Bui | der: : bui | dW r eHi t s(MDTChannel & chans, WreH t Map& hits) {
MDTChannel : : const _iterator iter = chans. begin();
for(;i!=chans.end();++i) {
Hi t MDTChannel chan(*iter);

i f(chan. get MDT()==0)
/1 1og an error using the error | ogger
/] assune that channel data is bad and that we cannot continue
/1 throw specific exception

}

i f (chan. noTi ne() ==true)

/1 1s this it for the message ????? |Is this an error?
/1 "No time in MDT tube"

}
el se
{
// Here we |leave the pos_error and drift_err calculation in the algorithm
/1 instead of letting the channel class do it. This may not be
/'l necessary.
double driftdist_err = 0.1 * chan.driftDi stance();
hits.insertHit(MioWreH t(
Posi ti on(
chan. wi rePosition(),
(.5 * chan.wireLength()) * chan.wireOrientation()
)
chan. i ndex(),
chan.driftTime(),
chan. driftDi stance(),
driftdist_err
)
}

Muon Reconstruction Review

4.4 EDM Use

The design tutorial present by us at the Seattle DO workshop should be used asasmpleguide. Here are
some of the key issues:

DOOM allows STL collections of objects (not pointers) to persist automatically without the need to
inherit from DO_Object. With the proper reorganization and memory management plan, all of the per-
sistent collections should be able to fit into this model. This has already been discussed briefly and
will be elaborated on in following sections.

There are other options for referring to collections of hits at the segment level and collections of seg-
ments at the track level. The LinkVectorIndex<> and LinkVectorPtr<> classes may simplify the use of
the muon chunks.

If transient versions of information that lives in a chunk are needed, such as collections of pointers to
hits, then use of the DOOM utilities for creating transient data automatically may be needed such as
activate() and deactivate().

Redesign of the MuoHitCollection to separate the two maps. The Chunk provides utilities to gather
pointers from both maps into one vector or list of pointers (to the base hit class). Part of this has al-

ready been discussed earlier in this document.

A muon hit chunk to support many of things discussed in this document could look as follows. A chunk
organized like MuoHitChunk below allows the use of the edm links. Unfortunately, because of level3 re-
quirements, the segment and track chunks may not be able to take advantage of this without a bit more
work than can be presented in this document. The second chunk in this code segment shows how one
might refer to hits in the MuoHitChunk using the edm link classes. The important thing hereisthe first
MuoHitChunk, the HitUser* examples can be looked at as a secondary issue.

cl ass MuoHi t Chunk : public edm : AbsChunk

CHUNK_SETUP(MuoHi t Chunk);

public:
/1 full service chunk for use with edmlinks
typedef std::vector<MioHi t*> CommonHits;

MioHi t Chunk() ;
~MuoHi t Chunk() ;

|'i st<edm : Chunkl D> parents() const;

li st<edm : RCPI D> rcps() const;

|i st<edm : Envl D> environnent () const;
voi d printChunk(ostream& out) const;

/| access separate pieces

const WreHi tMap& wreH tContents() const { return _wre_hits; }
WreH t Map& wireH tContents() { return _wire_hits; }

const ScintH tMap& scintHitContents() const { return _scint_hits; }
Scint Hi t Map& scintH tContents() { return _scint_hits; }

/1 should include these standard access methods

WreH t Map::data_type& wireH t At (WreH t Map:: key_type index);
Scint Hi t Map: : data_type& scintHi t At (Scint Hit Map: : key: : type index);
ComonHi t s: : val ue_type& at (CommonHi ts::size_type index);

// allow for nore than one type of object |ookup...
struct WreHitLookup {
const WreHi tMap::data_type* operator()(const MioHi t Chunk* c,
WreH t Map:: key_type i)
{ return & c->wireH tAt(i)); }

struct ScintHitLookup {
const ScintHitMp::data_type* operator()(const MioH t Chunk* c,
Sci nt Hi t Map: : key_type i)
{ return &(c->scintH tAt(i)); }

Il treat all hits the sane
ComonHi t s& contents()

{ if(_allready==false) buildHits(); return _all_hits; }
const ComonHi ts& contents() const

{ if(_allready==false buildHi ts(); return _all_hits; }

private:
void buildHits() const {... put all hits in _all_hits and set flag... }
WreH tMap _wire_hits;
ScintH tMap _scint_hits;
mut abl e CommonHits _all _hits;
nmut abl e _al | ready;

}s

/1 exanple of how a user chunk M GHT | ook, using the edmlinks
cl ass Hit User Segnent

{
public:
edm : Li nkl ndexVect or <MuoHi t > Hi t Li nks;
Hi tLi nks& hitContents() { return _hits; }
const HitLinks& hitContents() const { return _hits; }
Hi tList::IndexList& contents() { return _hits.contents(); }
const HitList::IndexList& contents() const { return _hits.contents(); }
voi d set Hit Chunk(edm : AbsChunk* c) { _hits. setLinkValues(c); }
voi d conpl et eLi nks(const edm : AbsChunk* c) const
{ edm:finishUpLink(hits,c); }
private:
Hi tLinks _hits;
Cartesi onPoint _position;
Cartesi onPoint _direction;
doubl e _quality;
doubl e _angl eDr;
b

typedef std::vector<H tUserSegnment> HitUser Segrments;
class HitUser Chunk : public edm : AbsChunk

CHUNK_SETUP(Hi t User Chunk) ;
public:

Hi t User Chunk() ;

~Hi t User Chunk() ;

standard chunk stuff

Hi t User Chunk: : val ue_t ype& at (Hi t User Chunk: : si ze_t ype i ndex)
{ doLinks(); return _segnents[index];}
const HitUser Chunk::val ue_type& at (HitUserChunk::size_type index) const
{ doLinks(); return _segnments[index]; }
Hi t User Segment s& cont ent s()
{ doLinks(); return _segnents; }
const HitUserSegnents& contents() const
{ doLinks(); return _segnents; }

private:
voi d doLi nks() const

i f(linksDone==true) return;
for(H tUserSegnents::const_iterator i=_segnents.begin();
i!=_segnents.end(); ++i)
(*i).conpletelLinks(this);
I i nksDone=t r ue;

}

Hi t User Segments _segnents;
#i fndef __ CINT__

nmut abl e bool |inksDone;
#endi f

Muon Reconstruction Review

}s

/| exanpl e use of this HitUserChunk object
voi d func(THandl e<H t User Chunk> uchunk)

{
const HitUserSegnents& segs = uchunk->contents();
Hi t User Segment : : const _iterator i = segs. begin()
for(;i!=segs.end(); ++i)

Li nkPt r Vect or <MuoHi t Chunk, MuoHi t > uv((*titer).hitContents());
Li nkPt r Vect or <MuoHi t Chunk, MuoHi t>:: const _iterator hiter;

for(hiter=uv.begin(); hiter!=uv.end(); ++hiter)
cout << (*hiter)->position() << endl;
}
}

As mentioned in the section on concerns, the selection of chunks from the event isnot adequate. Most of
the code looks like the following:

/'l Get MioHi t Chunk.
const TKey<MioHi t Chunk> nuonhi t Key;
THandl e<MuoHi t Chunk> pt r nuonChunk=nuonhi t Key. fi nd(event);

i f (ptrmuonChunk.isValid()){

}

Thiswill find ANY chunk of that type in the event, not necessarily the onethat isdesired. The chunks
should at least have some distinguishing feature that one can use, such as algorithm name and version, or
RCPID. If you are unsure, al the chunks of a given type should be retrieved, so afair decision can be
made asto which oneto use. When a chunk such as MuoSegmentChunk is created, it must record the
ChunkID of the MuoHitChunk that was used to construct it. Thisisthe only way to ensure that when users
want to go back to the hits that are contained in the segment, they can be sure to get the correct Muo-
HitChunk.

45 Framework Use

The event processing framework has evolved some over the past year. None of the static methods in the
reco classes arerequired and should beremoved. There aretwo important points that need to be made in
this section. Oneisthat reconstructor should do some of the work, such aslocating chunksin the event and
driving the algorithm. Activities that arerelated to working directly with the framework, the EDM, or
DOOM can be done directly in the framework package. The reconstructors (packages) can be tested outside
the framework main routine. Another item of interest here is what the muon hit processing reconstructor
could look like given the proposed changes.

4.5.1 Testing

The framework has a feature that allows one to construct a framework package outside the framework main
program. Thisfeatureisuseful for testing reconstructors (framework packages) that you write. Thisfacil-

ity creates an instance of your package and passesit back to you. You can call the processEvent method or
any other method yoursdlf to do testing. Hereisan example of its use:

#i ncl ude “MyPackage. hpp”
#i ncl ude “franmewor k/ Testi ng. hpp”
int min(int argc, char* argv[]) {
string rcp_info = argv[1];
MyPackage* ni ne;
Fwk: : makePackage(m ne, rcp_i nfo);
...open a test input file or prepare a test event sonehow ...

Event* e = getEvent(..);
nm ne- >processEvent (e);
...dunp results

del ete m ne;

}

4.5.2 Example Reconstructor

Here we present amajor part of what the muon hit processing framework package could look like. We
would have liked to do a similar job with the segment and track reco packages, but it would take too much
time

MioHi t Reco: : MuoH t Reco(Cont ext* c): Package(c)

{
string al go = packageRCP().getString("Al gorithm');
if(algo == "Standard")
_hit_builder = new Sinpl eHitBui |l der (packageRCP());
el se
{
error_|l og(ELabort,"init) << "Bad algorithmtype " << algo << endnsg;
t hrow BadSel ection("Bad al gorithmtype");
do other stuff here ...
}
Resul t MioHi t Reco: : processEvent (Event & event)
{
/1 UnpDat aChunk sel ection renmai ned unchanged fromthe current code
UnpChunkSel ect or sel ec(DOMCH: : MUO_FE) ;
const TKey<UnpDat aChunk> unpKey(sel ec);
THandl e<UnpDat aChunk> unpchunk=unpKey. fi nd(event);
i f (unpchunk.isValid()==fal se)
error_| og(ELwar ni ng, "m ssi ng data") << "No UnpDataChunk found in event" << endnsg;
return Result::success; // because no error policy defined
}
vect or <PDTChannel *> pdt _chans;
vect or <MDTChannel *> ndt _chans;
extract Channel s(unpdat a, pdt _chans); // fills pdt_chans
extract Channel s(unpdat a, ndt _chans); // fills ndt_chans
aut o_pt r <MuoHi t Chunk> chunk(new MioHi t Chunk);
try {
_hit_buil der->buil dWreH ts(pdt_chans, ndt_chans, chunk->wi reH tContents());
catch(const exception& e) {
/1 10og nessage or do sonmething interesting
}
i nsert Chunk(event, chunk);
}

5 Coding Recommendations

5.1 Memory Management

Our recommendation is to change from methods and functionsreturning newly created objects by pointer
tousing afill method. Itiseasest toillugrate thisthrough an example:

/1 old create-on-heap nethod
MioHi t Col | ecti on* processDat a(Thandl e<UnpDat aChunk> unp) {

Muon Reconstruction Review

do stuff ...
return new MioHi tCol l ection(...);

}

/1 old method use
void func(...) {
... do stuff ...
Thandl e<UnpDat aChunk> unpdata = ... find chunk in event ...
MioHi t Col | ection* hits = processDat a(unpdata) ;
... use it, copy info to chunk and delete it ...
MioHi t Chunk chunk(*hits);
insert chunk into event
delete hits;

}

/1 new fill method

voi d processDat a(Thandl e<UnpDat aChunk> unp, WreHitCollection& hits) {
hits.clear();
for each hit found {

... do stuff ...
hits.push_back(WreH t(...));
}
}
/1 new fill method use
void func(...) {
Thandl e<UnpDat aChunk> unpdata = ... find chunk in event ...
MuoHi t Chunk chunk;
ProcessDat a(unpdata, chunk.wireH ts());
}

The fill method forces the lower-level functions and methods to put the things they generate directly into
the container where they bel ong, instead of into an intermediate place. This style of memory management
removes the need for DOOM versions of classes and a so removes a large amount of the copying that needs
to go on in the current code. It aso reduces the number of interactions with the heap manager and makes it
clear who the owner of the memory is.

5.2 Use of UnpDataChunk

It has been recommended that Mike Fortner add a couple of utilities to make working with the UnpDa-
taChunk smpler for theuser. What drove thisrecommendation was the code in the MuoHitProcessor that
copies PDTChannds and MDT Channels out of the UnpDataChunk. Here we recommend using the new
utilities, aswell asnot copying the channes and using the vector of channel pointersthat isreturned from
thenew utilities. Hereisa quick outline of what has been proposed and an example use of it.

voi d exanpl e_func(THandl e<UnpDat aChunk> unpdat a)
{

vect or <PDTChannel *> pdt _chans;
vect or <MDTChannel *> ndt _chans;
extract Channel s(unpdat a, pdt _chans); // fills pdt_chans
extract Channel s(unpdat a, ndt _chans); // fills ndt_chans

/'l or one can do...

vect or <PDTMbdul e*> pdt _nods;

vect or <MDTMbdul e*> ndt _nods;

ext ract Modul es(unpdat a, pdt _nods) ;
ext ract Modul es(unpdat a, ndt _nods) ;

The exact name of the utilities and arguments to them will be up to Mike Fortner to decide. Thissimple
utility reduces the code in MuoHitProcessor.cpp to just afew lines that are easy to understand and clean.

5.3 General

5.3.1 Const private members

We have noticed that many classes contain private const data members (of things other than pointers and
references). For references or pointers this makes sense, especially if the class does not own the instances
and just looks at them. For built-in types such asint and double, and for instances that are owned by the
class, this does not make any sense. After all, only the classitself can modify the variables in the private
section anywhere, so why put this extrarestriction in place. An exampleis MuoSegment. Here none of
these variables need to be const.

cl ass MuoSegnent {

private:

const Mol ndexVector _rnuol ndexVect or;
const Position _position;
const Direction _direction;
const doubl e _quality;
doubl e _angl eDr;

b

Furthermore, methods or functions that take const build-it types as arguments should be changed. Doing
this has no effect and the compiler is supposed to warn you about it. Unfortunately these warning have
been turned off at DO. An exampleis:

ext ern bool TDTAToDr Di st AxDi st PDT(const double td, const double ta,
const doubl e angl e,
doubl e& drift_dist, doubl e& axial dist);

The const double here serves absolutely no purpose and should be changed to just double.

5.3.2 Using THandle<>

When using object retrieved from the event, do not remove the object from the THandle<> class that sur-
roundsit. Usethe smart pointer THandle<> asit should be used.

5.3.3 Argument Names

Use descriptive names for arguments to methods and functions, especially if all the arguments are doubl es.
Here is an example from MuoHitProcess.cpp where we could not tell if there was an error or not:

Muon Reconstruction Review

// code from MioHi t Processor
bool tine_conversion = T1T2ToTDTAPDT(t1,t2,wire_length,td,ta);
i f(time_conversion &% TDTAToDr Di st AxDi st PDT(td, fabs(ta), angl e, xd, xa))

/1 function prototypes frommuo_util package:
extern bool T1T2ToTDTAPDT(const double t1,
const double t2,
const doubl e wirel ength,
doubl e& ta,
doubl e& td);

ext ern bool TDTAToDr Di st AxDi st PDT(const doubl e td,
const double ta,
const doubl e angl e,
doubl e& drift _dist,
doubl e& axi al _dist);

Look closely at the argumentstaand td of TIT2ToTDTAPDT(), in the prototype and the code that usesit.
They appear to be switched. Thisisdifficult to detect using the compiler because both are doubles. More
descriptive names could help. Event better would be to create a smple object that takes the two timing
values as arguments and produces the val ues ta and td using methods:

cl ass PDTt 1t 2Tot dt aConverter // this is not a good nane
{
publi c:
PDTt 1t 2Tot dt aConverter (doubl e t1, double t2): t1(t1), t2(t2) { }
doubl e get TAxi al (doubl e wi rel ength);
doubl e get TDi st ance(doubl e wi rel ength);
private:
double t1, t2;

H

Now it isdifficult to make a mistake and get the wrong values. The example changesto PDT hit processor
use this method.

5.3.4 lllegal Constructs
Goto statements should never be used.

5.4 Error Reporting

Exceptions should be used for reporting and generating errors. In the problem section above, we refer to
both global and local error reporting. The framework does not have a policy defined for handling standard
exceptions thrown by packages (global errors); it currently just prints the message in the exception and ex-
its. The muon packages need to define exceptions that will be used for local error reporting and use them
internally. The error logger can be used directly by the exception classes or used by the algorithm code to
issue warnings or important informational messages. It isimportant to note that the error logger cannot
alter program flow, its purpose isto record errors by level and type. All use of error codes should bere-
moved.

5.4.1 Global Error Handling

Here we would like to present some preliminary ideas of how global errors can be handled. The most ob-
vious global error caseisthe detection of bad datain the event. The action here could be to throw out the

event completely or put it into a bad event file. In any case, further processing should not be done on this
event. A standard set of base exception classes can be made available by the framework, such as
“ScrapEvent”, “KillProgram”, and “ByPassT hisDetector”. Algorithms would create their own exception
by deriving from these base classes. The framework should not dictate the actions of these exceptions,
instead, RCP values should define what happens when the framework catches these exceptions. The cur-
rent policy of always returning “Success’ to the framework from a package is not adequate.

5.4.2 Local Error Handling

New exceptions introduced by the muon packages should derive from the STL exception classes. All of
these exceptions are required to produce atext string that explainsthe error that occurred. Use of excep-
tionsisanice way to propagate errors up a call stack without constantly using if-then-el se structures and
return codes at all levels. The example MuoHitProcessor code that we provided shows a simple use of ex-
ceptions. Here isan example of using the error logger to report a warning:

error _| og(ELwar ni ng, "bad_dat a”)
<< "No tine info in channel " << *iter << endnsg;

The framework sets up the variable error_log as part of the protected section of the Package class. You
may need to create a private error_log variablein low-level algorithm code. To create aprivate error_log
variable, one can do the following:

#i ncl ude "ErrorLogger/ ErrorlLog. h"

ErrorLog error_| og(“MioHi tProcessor”); // package/al gorithm nane

Below is an example of a Smple exception.

#i ncl ude <st dexcept >
cl ass MuoBadData : public runtime_error {
publi c:

MuoBadDat a(stri ng package, string text):
runtime_error(type() + package + text) { }
MuoBadDat a(ErrorLog& e, string package, string text):

runtime_error(type() + package + text)

{ e(ELerror,type()) << text << endnsg; }
Privat e:
static string type() { return “MioBadData”; }

b

This example optionally logs a message to the error logger (in a very simplistic manner). The exceptions
should be throw at the point where the error occurs. The exception should be caught at alevel appropriate
for handling the error. In the MuoHitProcessor code, it could very well be at the reconstructor level. This
means that intermediate level s do nothing about the error — it will be propagated through this layer of code.
Doaing this makes the code more manageable and easier to follow.

5.5 Package Organization

All using declarations (example: using edm:: Chunkl D) must be removed from headers. (They arefinein
.cppfiles). Putting using declarations in the header files opens up the namespaces to everyone that includes
the header file. In all casesthisisnot desirable.

Extraneous headers should be removed (example: MuoTrackChunk.hpp includes 11 headers; 5 are not
needed). In many cases, long build times can be attributed in part to this. Including header filesthat are
not really needed causes unnecessary dependency generation and hence, unnecessary rebuilding of files.
Coupled to thisisthe use of forward declarations. Forward declarations of classes should be used in header
fileswherever possible. The only time aheader file for another class needsto be included isif an instance

Muon Reconstruction Review

of theclassis present in the class that is being defined. If other classes are used by pointer or reference
only, they can be forward declared.

6 Physical Design

At ahigh-level the physical design appearsto be adequate. Animportant objective hereisto use the exact
same agorithm code in offlineand in level3. Unfortunately we see that in several cases the algorithm
functions are contained in the same implementation files as the code that plucks the information from the
event. Doing thisreally defeats the purpose of breaking the problem apart. We have heard that level 3 may
want to do rel eases separate from the offline, if thisisthe case, then common or shared a gorithm pieces
redly need to live in separate packages or libraries.

The segment reconstructor lives in the same package as the segment finding algorithm. This organization
will not allow the algorithm to be used in level 3, where reconstructors do not exist. Thetrack reconstructor
package likely has the same problems.

7 Documentation

The documentation in these packages is better then we found elsewhere. Some of the UML diagram have
incorrect use of symbols and relationship; this was a small point of confusion. Some of the algorithm code
is commented quite heavily and this was essential to figuring out what the algorithm actually did. Unfortu-
nately a few of the comments were inconsistent with code and in several cases explained what was going
on in terms of variables such asxa, t1, and t2. 1t would have been much more useful to have one block of
comments at the top of the file, usng the MuoHitProcessor as an example, explaining the algorithm in
terms of the physical hardware that is manipulates and in terms of a mathematical formula. We needed to
find an expert in muon geometry and hardware readout to understand this code.

8 Testing

Providing component tests can really prevent dOreco from dying on silly errorsthat could have been de-
tected and corrected very early on. Thereislikely to be much finger pointing when dOreco crashes,
component tests can be used to show that you are not to blame. If you are to blame for the crash, then the
test programs can ad in the discovery of the actual problems. Component tests do not need to be complex
and exercise every little bit of code. Do whatever you can to get tests in this code — use the CTBuild model
or usethetest directory model for a set of executables that test parts of the system.

It was mentioned in the review meeting that in some cases test datais needed and that thisis typically diffi-
cult to get and use. We will again use the MuoHitProcessor as an example. One way to test thiswould be
to collect a bunch of channel data and run the algorithm on it, comparing the results with what you discov-
ered by hand. Another way would be to prepare a channel with information that you already know the
outcome. Thisisquite simpleto do. Now prepare atest that attemptsto find the hit or hitsin thissingle
fabricated channd. If atest like this cannot easily be done, then the design of the codeiswrong. You
should be able to exercise the core parts of the algorithm separately if the problem has been decomposed

properly.

9 Conclusion

We did not have the time to walk through the segment and track finding code to the same degree as the hit
finding code. We believeit suffers from the same problems. One small clueisthe code appearance on
paper. A subroutine or method that has many nested levels of braces for if-then-else and do-while struc-
turesislikely to suffer from decomposition problems. It islikely that the subroutines and methodsin
question are doing too much — stepping out of their realm of expertise. Any further analysis or review of
this code should be done interactively with the authors. We would really like to have gone through the
segment/track finding code to make recommendation about marking hitsand using STL for selections and
sorting.

The examples prepared for this document were not walked through in any formal fashion and are not guar-
anteed to be completely accurate in respect to the hit finding algorithm (or any other algorithm for that

matter). Please notify the authorsif errors or inconsistencies are found. We wanted to release this docu-
ment as soon as possible.

